Green Chemistry Around Europe

 

Embed or link this publication

Description

GCARE

Popular Pages


p. 1



[close]

p. 2

Project Coordinators: Austria Herbert Stieb Josef Winkler Bulgaria Tanya Kartuleva Anastasiya Cholakova Hungary Edina Tóth Eszter Villányi Italy Laura Rua Anna Braccia Romania-Ana Aslan Technical College Valentina Darabantu Mariana Szenkovits Silvia Turean Romania-Farmec Company Sofia Irimie Anca Sipos Turkey İsmail Saraçoğlu Arzu Tikiç Gürtekin Uğur Okumuş İsmail Göncü Cahit Altinçiçek Şadiye Nalbant Mensure Yilmaz Graphic Design Alexandra Muresan (Romania) Green Chemistry Around Europe is a Leonardo Da Vinci Project. Project no.: 2013-1-HU1-LEO04-10213 http://new-twinspace.etwinning.net/web/p97972/welcome http://greenchemistry.eu Disclaimer: The content of this material is the sole responsibility of the authors and the National Agencies and European Comission are not responsible for the way the content or information will be used.

[close]

p. 3

Table of contents: What is GCARE? ............................................................5 The twelve principles of green chemistry .........6 What Is Green Chemistry ........................................20 Our understandings of Green chemistry .....................21 – Austria .................................................................21 – Bulgaria ................................................................22 – Hungary ..............................................................23 – Italy .................................................................... 24 – Romania ..............................................................26 – Turkey .................................................................27 The domains of our research ...................................30 Cement Manufacuring - Austria ..................................30 Organic Chemistry - Bulgaria .....................................34 Pharmaceuticals Industry - Hungary ............................38 The impact on water quality and supplies - Italy .........42 The cosmetic field - Romania .....................................48 Carbon Fibres - Turkey ...............................................52 The change of chemical industry due to the 12 principles: .................................................................58 1. Prevention ............................................................. 59 2. Atom Economy .......................................................62 3. Less Hazardous Chemical Syntheses .......................64 4. Designing Safer Chemicals ......................................66 5. Safer Solvents and Auxiliaries .................................68 6. Design for Energy Efficiency ..................................70 7. Use of renewable feedstocks ..................................72 8. Reduce derivatives ..................................................74 9. Catalysis .................................................................76 10. Design for Degradation ..........................................80 11. Real-time Analysis for Pollution Prevention ............82 12. Inherently Safer Chemistry for Accident Prevention 84 Bibliography ....................................................................88 3

[close]

p. 4



[close]

p. 5

What is GCARE? Green Chemistry Around Europe or GCARE as it is abbreviated is a EU project about green chemistry involving 6 schools. Moncalieri, Italy HTL - Wels, Austria Petrik Lajos Vegyipari SzKl - Budapest, Hungary Yalova Mesleki ve Teknik Anadolu Lisesi - Yalova, Turkey Romania Switching to clean technologies in the chemical industry, lays weight on the reduction of waste at source. This requires new technologies which have been adopted industrially. Green Chemistry has become an innovative technology since 1990 and it is constantly improving. As protection of our environment and planet has become the key issue of our age, we find it extremely important to investigate if the industry and education of our countries deal with green chemistry. We also think that it is essential to raise not only our students’ but people’s environmental awareness on a wider scene and this project, with carrying out international research and creating a material together with students perfectly serves this aim. The project established a Classification System to evaluate the extent the companies follow the principles of green chemistry. It examined all stages of production from the aspect of principles of Green Chemistry. Each participant carried out research in a subfield of Chemistry following specific Standards and using Eco label certificates. In the 1st year each participant found out if the companies define green chemistry and if so, how. Furthermore the partners examined if the companies had a classification system and how it worked. They also found out if green Chemistry is part of the national curriculum of the countries. In the 2nd year results were compared and analysed and material for the Curriculum and the System of Classification was collected, selected, created and shared. In the 2nd year creative materials for dissemination were produced and the system of classification was developed. 5

[close]

p. 6

The 12 principles of green chemistry are: 1. Prevention: 2. Atom Economy: It is better to prevent waste than to treat or clean up waste after it has been created. Design synthetic methods to maximize the incorporation of all materials used in the process into the final product. 3. Less Hazardous Chemical Syntheses: Design synthetic methods to use and generate substances that minimize toxicity to human health and the environment. 4 .Designing Safer Chemicals: Design chemical products to affect their desired function while minimizing their toxicity. 5. Safer Solvents and Auxiliaries: Minimize the use of auxiliary substances wherever possible make them innocuous when used. 6 6. Design for Energy Efficiency Energy requirements of chemical processes should be recognized for their environmental and economic impacts and should be minimized. If possible, synthetic methods should be conducted at ambient temperature and pressure.

[close]

p. 7

7. Use of renewable feedstocks: Whenever it’s possible, technically and economically, a raw material should be renewable rather than depleting. 8. Reduce derivatives: Unnecessary derivatization should be minimized or avoided if possible. 9. Catalysis: 10. Design for Degradation: Design chemical products so they break down into innocuous products that do not persist in the environment. Catalytic reagents are superior to stoichiometric reagents. 11. Real-time Analysis for Pollution Prevention: It is better to prevent waste than to treat or clean up waste after it has been created. 12. Inherently Safer Chemistry for Accident Prevention: Choose substances and the form of a substance used in a chemical process to minimize the potential for chemical accidents, including releases, explosions, and fires. 7

[close]

p. 8

Die 12 Prinzipien der grünen Chemie sind: 1. Abfallvermeidung: 2. Atomökonomie: Synthetische Reaktionen sollten so entwickelt werden, dass die verwendeten Ausgangsstoffe mit einem maximalen Anteil am Endprodukt verwendet werden. Es ist besser, Abfall zu verhindern, als den entstanden Abfall zu reinigen oder aufzubereiten. 3. Weniger gefährliche Chemische Synthesen: Wo immer anwendbar, sollten die Synthesewege so entworfen werden, dass die verwendeten und erzeugten Substanzen über eine möglichst geringe oder keine Giftigkeit gegenüber der Gesundheit des Menschen oder der Umwelt besitzen. 4.Entwicklung Sicherer Chemikalien: Chemische Produkte sollen so entwickelt werden, dass sie ihre notwendige Funktionalität mit einem Minimum an Giftigkeit erreichen. 5.Unkritischere Lösungsmittel und Hilfsstoffe: Die Verwendung von Hilfsstoffen (wie Lösungsmittel, Trennmittel, etc.) sollten, soweit möglich, vermieden werde. Bei Verwendung sollten die Substanzen unschädlich sein. 8 6.Energieeffiziente Prozesse: Energieverbräuche sollten unter der Betrachtung des Umwelt und des ökonomischen Einflusses betrachtet werde. Soweit möglich, sollten die Reaktionen unter Umgebungsbedingungen ablaufen.

[close]

p. 9

7.Verwendung erneuerbarer Ausgangsmaterialien: Wo immer technisch und Ökonomisch sinnvoll, sollte nachwachsenden Rohstoffen gegenüber nicht erneuerbaren Rohstoffen der Vorzug gegeben werden. 8.Reduzierung von Derivaten: Unnötige Derivatisierung sollte vermieden werde, da diese Prozessschritte einen zusätzlichen Chemikalienverbrauch und sehr oft Abfall erzeugen. 9.Katalyse: 10.Entwicklung der Abbaubarkeit: Chemische Produkte sollten so entworfen sein, dass sie am Ende ihrer geplanten Funktionalität in unschädliche Produkte zerfallen, die sich nicht in der Umwelt anreichern. Katalytische Reagenzien (so selektiv wie möglich) sollten gegenüber stöchiometrischen Reagenzien den Vorzug gegeben werden. Analytische Methoden sollen so entwickelt und eingesetzt werden, dass eine Echtzeitund Inline-Prozessführung die Entstehung gefährlicher Stoffe in einem frühen Stadium verhindert. 11.Echtzeitüberwachung in der Abfallvermeidung: Substanzen und deren Form, die in einem chemische Prozess verwendet werden, sollten so ausgewählt werden, dass das Potential für einen Unfall (incl. Freisetzung an die Umwelt, Feuer, Explosion) möglichst gering ist. 9 12.Von der Natur aus sichere Chemikalien zur Unfallverhütung:

[close]

p. 10

12-те принципа на зелената химия са: 1. ПРЕДОТВРАТЯВАНЕ: 2. ИКОНОМИЯ НА АТОМИ: В използваните методи на производство трябва всички материали да са включени максимално за получаване на краен продукт. 4. РАЗРАБОТВАНЕ НА БЕЗОПАСНИ ХИМИКАЛИ И ПРОДУКТИ: Химикалите трябва да са проектирани така, че да се запази тяхната ефективност, като същевременно се намали токсичността. Производството да бъде проектирано така че да бъдат избегнати отпадъците и нуждата от по нататъшното им третиране и рециклиране. 3. ПО-МАЛКО ОПАСНИ ХИМИЧНИ РЕАКЦИИ: Доколкото е възможно, синтетичните методи трябва да бъдат проектирани за използване и генериране на вещества, които имат малко или никаква токсичност за здравето на човека и околната среда. 5. ПО-БЕЗОПАСНИ РАЗТВОРИТЕЛИ И ПОМОЩНИ МАТЕРИАЛИ Използването на помощни вещества (например разтворители, разделителни агенти и т.н.), трябва да не е необходимо, ако е възможно и безвредно, ако е необходимо. 10 6. ЕНЕРГИЙНА ЕФЕКТИВНОСТ: Енергийните нужди на химичните процеси трябва да бъдат сведени до минимум. Ако е възможно, синтетичните методи трябва да се провеждат при стайна температура и атмосферно налягане.

[close]

p. 11

7. ИЗПОЛЗВАНЕ НА ВЪЗОБНОВЯЕМИ СУРОВИНИ. Възобновяемите суровини трябва да се предпочитат пред невъзобновяеми, ако това е технически и икономически осъществимо. 8. НАМАЛЯВАНЕ НА ДЕРИВАТИТЕ: Ненужното използване на материали трябва да бъдат сведени до минимум или избегнати, ако е възможно, тъй като използването им води до използване на допълнителни реактиви и могат да генерират отпадни продукти. 9. КАТАЛИЗАТОРИ: 10. ДИЗАЙН ЗА РАЗГРАЖДАНЕ: Синтезираните нови химически продукти трябва да бъдат такива, че в края на изпълнението на своите функции да се разделят на безвредни продукти при разграждането им и да не остават в околната среда. 12. НАМАЛЯВАНЕ НА ВЕРОЯТНОСТТА ОТ ВЪЗНИКВАНЕТО НА ИНЦИДЕНТИ: Трябва да използват катализатори (до колкото е възможно селектирани), които подлежат на възстановяване и за многократна употреба. 11. АНАЛИЗ В РЕАЛНО ВРЕМЕ ЗА ПРЕДОТВРАТЯВАНЕ НА ЗАМЪРСЯВАНЕ: Трябва да се разработват аналитични технологии, които позволяват наблюдение в реално време на процесите и управлението, и предотвратяват образуването на опасни вещества. При разработване на химикали и техните форми (твърда, течна и газообразна) трябва да се намали вероятността от взрив, запалване или изхвърляне в околната среда. 11

[close]

p. 12

A 12 elvei zöld kémia : 1. Jobb megelőzni a hulladék keletkezését, mint keletkezése után kezelni. 2. Szintézisek tervezésénél törekedni kell a kiindulási anyagok maximális felhasználására (atomhatékonyság). 3. Lehetőség szerint már a szintézisek tervezésénél olyan reakciókat célszerű választani, melyekben az alkalmazott és keletkező anyagok nem mérgező hatásúak és a természetes környezetre nem ártalmasak. 4. Kémiai termékek tervezésénél törekedni kell arra, hogy a termékekkel szembeni elvárások teljesítése mellett mérgező hatásuk minél kisebb mértékű legyen. 5. Segédanyagok (oldószerek, elválasztást elősegítő reagensek, stb.) használatát minimalizálni kell, s amennyiben szükséges, ezek „zöldek” legyenek. 12 6. Az energiafelhasználás csökkentésére kell törekedni.

[close]

p. 13

7. Megújuló nyersanyagokból válasszuk a vegyipari alapanyagokat. 8. A felesleges származékkészítést kerülni kell. 9. Reagensek helyett katalizátorok alkalmazását kell előtérbe helyezni. 10. A vegyipari folyamatokban olyan anyagokat kell használni, amelyek csökkentik a vegyipari balesetek (kémiai anyagok kibocsátása, robbanás, tűz) valószínűségét Új és érzékeny analitikai módszereket kell használni a vegyipar folyamatok in situ ellenőrzésére, hogy a veszélyes anyagok keletkezését idejében észleljük. 11. 12. A vegyipari folyamatokban olyan anyagokat kell használni, amelyek csökkentik a vegyipari balesetek (kémiai anyagok kibocsátása, robbanás, tűz) valószínűségét. 13

[close]

p. 14

I 12 principi della chimica verde sono: 1. Prevenzione: 2. Economia di atomi: È meglio prevenire la produzione di rifiuti che trattare o ripulire i rifiuti dopo la loro formazione. I metodi di sintesi devono essere progettati per incorporare il più possibile nel prodotto finale tutti i materiali usati nel processo. 3. Reazioni chimiche meno pericolose: Per quanto possibile, le metodologie di sintesi dovrebbero essere ideate per usare o generare sostanze che abbiano poca o nessuna tossicità per la salute umana e l’ambiente. 4. Progettazione di prodotti chimici piu’ sicuri: I prodotti chimici devono essere progettati per preservare l’efficacia della funzione, riducendo la tossicità. 5. Sostanze ausiliare piu’ sicure: L’uso di sostanze ausiliarie (come solventi, agenti di separazione, ecc.) deve essere reso non necessario, se possibile, e innocuo, se necessario. 14 6. Efficienza energetica: I fabbisogni di energia dovrebbero essere valutati per il loro impatto ambientale ed economico che deve essere ridotto al minimo. I metodi di sintesi devono essere condotti a temperatura e pressione ambiente.

[close]

p. 15

7. Uso di materie prime rinnovabili: Una materia prima rinnovabile dovrebbe essere preferita ad una non rinnovabile, se ciò sia tecnicamente ed economicamente praticabile. 8. Riduzione dell’ uso di derivati: La produzione di derivati non necessari (gruppi bloccanti, processi di protezione/deprotezione, modifiche temporanee della struttura) deve essere evitata il più possibile perché tali passaggi richiedono reagenti addizionali. 9. Catalisi: 10. Degradazione nell’ ambiente: I prodotti chimici devono essere progettati in modo che al termine della loro funzione non persistano nell’ambiente e diano prodotti di degradazione innocui. Bisognerebbe usare catalizzatori (più selettivi possibile) che siano recuperabili e riutilizzabili. 11. Analisi in tempo reale dei processi chimici: È necessario sviluppare tecnologie analitiche per permettere il monitoraggio in tempo reale dei processi e il controllo prima della formazione di sostanze pericolose. 12. Prevenzione degli incendi: Il processo di sintesi e l’ambiente di reazione devono essere scelti in modo da minimizzare il rischio di incidenti sia verso l’ambiente sia verso l’operatore. 15

[close]

Comments

no comments yet